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LETTER TO THE EDITOR 

Why normal Fermi systems with sufficiently singular 
interactions do not have a sharp Fermi surface 

Peter Kopietz 
lnstitut fdr Theoretische Physik der Univenita G.jUingen, BunsensmEe 9, D-37073 GiiRingen, 
Germany 

Received 10, August 1995 

Abstrad. We use a bosonization approach to show that the momenhlm distribution nk of 
normal Fermi systems with sufficiently singular interactions is analytic in the vicinity of the 
non-interacting Fermi surface. These include singular density-density interactions that diverge 
in d dimensions stronger than lql-l(d-') for vanishing momentum transfer q. but also fermions 
that we coupled to Vansverse gauge fields in d < 3. 

As first noticed by Bares and Wen [l], singular density-density interactions with Fourier 
@ansfom fq a IqI-' destroy in d dimensions the Fermi liquid state for > 2(d - 1). The 
case q = 2(d - 1) is marginal and corresponds to a Luttinger liquid, while for q > 2(d - 1) 
one obtains normal metals which are neither Fermi liquids nor Luttinger liquids. We shall 
call these metals strongly correlated quantum liquids. The properties of these systems are 
not very well understood. Certainly strongly correlated quantum liquids cannot be studied by 
means of conventional many-body perturbation theory, because the perturbative calculation 
of the self-energy leads to power-law divergences. In the present work we shall use higher- 
dimensional bosonization to calculate the momentum distribution n k  in these systems. We 
find that for q > 2(d - 1) the momentum distrihution nk does not have any singularities, so 
that a sharp Fermi surface cannot be defined. We then argue that below three dimensions 
the momentum distribution of electrons that are coupled to transverse gauge fields has also 
this property. 

Bosonization in arbitrary dimensions has recently been discussed by a number of authors 
12-81. The fundamental geometric construction is the subdivision of the Fermi surface into 
patches of area Ad-1. With each patch one then associates a 'squat'box' Ka [4] of radial 
height A << kp and volume AAd-', and partitions the degrees of freedom close to the Fermi 
surface into the boxes Ka. Here kF is the Fermi wavevector, and (Y labels the boxes in 
some convenient ordering. If the size of the patches is chosen small enough, then the 
curvature of the Fermi surface can be locally neglected. The essential motivation for this 
construction is that it opens the way for a local linearization of the non-interacting energy 
dispersion sk:  If ka points to the suitably defined centre of box K", then for k E K' we 
may shift k = ICu + q. and expand - p rx vu q. where p is the chemical potential 
and va is the local Fermi velocity. At high densities and for interactions that are dominated 
by small momentum transfers the linearization implies in arbitrary dimension a large-scale 
cancellation between self-energy and vertex corrections (generalized closed loop theorem 
[SI), so that the entire perturbation series can be summed in a controlled way. The final 
result for the Matsubara-Green function C ( k ,  iUi,) of the interacting many-body system is 
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then 

where W ( k )  is unity of k E KDL and vanishes otherwise, and 

Here ,B is the inverse temperature, V is the volume of the system, q = [q,io,], and 
rll = T . P, with +Y' = vU/IvaI. The fermionic Matsubara frequencies are denoted by 
CS. = Zz[n + ! j ] /p ,  and the bosonic ones are om = 2nm/p.  For length scales 1 ~ ~ 1  >> A-I 
the function 8f-')(~J can be treated as a (d - 1)-dimensional Dmc-8 function of the 
components of T orthogonal to .it". The effect of the interactions is contained in ea(., r),  
which depends exclusively on the random-phase approximation f,"" for the interaction. 
In the functional-integral formulation of bosonization [+9], em(?, r )  can be interpreted 
simply as the usual Debye-Wailer factor that arises in a Gaussian average. A result similar 
to equations (1x3) has also been obtained by Castellani et d [lo] by means of a non- 
perturbative approach based on Ward identities 11 11. 

We consider densitydensity interactions of the form fq = fo(qc/lql)n e-lql/qc, with 
q > 0 and qc << kF. After lengthy but straightforward algebra we obtain from equation (3) 
for the leading asymptotic behaviour of the equal-time Debye-Waller factor at large distances 

for q < 2(d - 1) 
Q"(rIlV-, 0) - -YdIn(C?chl) for q = 2(d - 1) 

for q > 2(d - 1) 
(4) 

L l + l  1 Rd.rl -Bd.? b IrII 1) 2 

where we have assumed for simplicity that the Fermi surface is spherically symmetric. 
Here Rd,?, yd and j3d,q are finite real nmbers that depend not only on d and q. but also 
in FO ufo, where U is the d-dimensional density of states at the Fermi energy. Explicit 
expressions for Rd,?, yd and Bd,? can be written down in arbitrary d, but are omitted here 
for brevity, because the precise values for these quantities are not essential in this work. We 
would like to point out however, that in an arbitrary dimension there exists a critical value 
q; > 2(d - 1) where p d , d  diverges. It is not clear if this divergence signals a physical 
instability of the metallic state, or simply arises from the inadequacy of the bosonization 
approach. For example, in d = 1 we obtain for q > 0 

Because + 00 for q - +  4, the static Debye-Waller factor is divergent for q > 4, so that 
q; = 4. More generally, for singular interactions in arbitrary d it is easy to show by simple 
power counting that q; = 2(d + 1). However, the finiteness of the static Debye-Waller 
factor does not imply that for 5 # 0 the function Qa(rl@", r )  remains finite as well. For 
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example, in d = 1 the standard bosonization procedure 1121 leads to an integral over the 
term 

where the expansion of the exponential for small 411 is justified as long as q < 2. Obviously, 
the singularity at small 411 is not integrable for q > 1, so that in d = 1 the full Green function 
can only be calculated via bosonization for q < 1. I n  the rest of this paper we shall assume 
that 0 < q < 7; = 2(d + l), so that the bosonization resdt for the equal-time Green 
function is free of divergences. 

Given the equal-time Green function,~-we may calculate the momentum distribution 
nk = E, G(t, i&) in the vicinity of the Fermi surface. Using equation (1) and shifting 
IC = V + q, It IS easy to show that for 141 << qc 

Note that An; depends only on the projection 911 of g that is normal to the Fermi surface, 
because this component corresponds to a crossing of the Fermi surface and can therefore 
be associated with a possible discontinuity. Because equation (4) is valid for rll 2 &*, we 
separate from equation (7) the non-universal short-distance regime and obtain for 1q111 << qc 
after rescaling the integration variables 

where the non-universal constant za is given by 

For 1q111 << qc we may substitute in the second term of equation (8) the asymptotic expansion 
of Q a ( ; P ,  0) for large x/q,, see equation (4). For q c 2(d - 1) we obtain 

8n.t = eR'sign(qll) 7 < 2(d - 1). (10) 

This is the usual Fermi liquid behaviour: the discontinuity of the momentum distribution 
at point IC' is given by the quasi-pa&le ,midue Z" = eR'. Because Ra is negative [7,8], 
we have 0 < Zm e . I .  Note that for small 911 the first term in equation (8) is negligible. In 
the marginal case 7 = 2(d - 1) we obtain for lql l '< qc 

, 

From this expression it is e&y~to show that to leading order 

An algebraic singularity in the momentum distribution is characteristic for Luttinger liquids 
[12]. Note, however, that for i d  = 1 the singularity is only logarithmic, and that for yd > 1 
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the leading term is even analytic. Although, in this case, there are non-analyticities in the 
higher-order corrections, one may wonder whether for yd > 1 the bosonization approach is 
consistent. Recall that we have linearized the energy dispersion 'at the Fermi surface', thus 
implicitly assuming that the Fermi surface can somehow be defined. In the case of a Fermi 
liquid the finite discontinuity of the momentum distribution leads to a unique definition of 
the Fermi surface. For a Luttinger liquid one may define the Fermi surface as the set of 
points in momentum space where nk has an algebraic singularity. However, for yd > 1 it 
is at least not quite satisfactory that one has to rely on asymptotically irrelevant corrections 
to define the Fermi surface. This point becomes even more questionable if we consider the 
case q > 2(d - 1). Then we obtain from equations (8) and (4) 

2 ,m s in(2x)  
8n:-z'-+- 411 dx  exp[-pd,nxf"+'l. 

qc rr 1 X 

The crucial observation is now that the stretched exponential vanishes f a t e r  than any power, 
so that the integral can be done by expanding sin((q,I/q,)x) under the integral sign and 
exchanging the order of integration and summation. It immediately follows that 6n; is for 
q > 2(d - 1) an analyticfunction of qi. To leading order we have 

If pd.?  or - d + 1 is small, the second term is dominant because then the integral is 
determined by the large-x regime. Then we may extend the lower limit to zero and obtain 

Hence, there is no singularity whatsoever in the momentum' distribution, so that a sharp 
Fermi surface simply cannot be defined. The complete destruction of the Fermi surface in 
strongly correlated Fermi systems is certainly not a special feature of the singular interactions 
studied in the present work. For example, models with correlated hopping [13,14] show 
similar behaviour. 

The obvious question now is whether for q > 2(d - 1) the bosonization approach is 
consistent or not. Before addressing this question, let us briefly recall that in disordered 
systems the situation is precisely the same 1151. Here also the average momentum 
distribution in the vicinity of the Fermi surface of th- clean system does not have any 
singularities. In this case the thickness of the shell where Rk drops from unity to zero 
is given by the inverse mean free patch t-'. Because in good metals e-' << kp, the 
'Fermi surface' is defined in the sense that outside the limits of a thin shell in momentum 
space the derivative of nk is negligibly small. Because in the laboratory impurities can 
never be completely eliminated, this definition of the Fermi surface does justice to the 
experimental reality, although it is impossible to define a surface in the strict mathematical 
sense. Clearly, the 'Fermi surface' in the present problem should be defined analogously: 
as long as the thickness ks of the shell where the momentum distribution varies appreciably 
is small compared with kF, it is meaningful to talk about a smeared Fermi surface, or, more 
accurately, a Fermi shell. The condition ks < kF is sufficient to make the bosonization 
approach internally consistent, because then it does not matter at which location within the 
Fermi shell the non-interacting energy dispersion has been linearized. This point of view 
has also been emphasized in the classic paper by Tomonaga [12]. 

The properties of strongly correlated quantum liquids are not only of academic interest. 
Physical manifestations of such an unusual metallic state might have been observed in the 
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normal-state of the cuprate superconductors [16], or in half-filled quantum Hall systems 
[17]. Recent theoretical models for these systems involve the coupling between electrons 
and transverse gauge fields, which at the fermionic level leads to an effective current-current 
interaction. In the permrbative calculation of the fermionic self-energy this rather singular 
interaction gives rise to divergences which are stronger than logarithmic. . . .  The . singular 
nature of the current-current interaction is essentially a consequence Of gauge inv&$ance, 
which implies that, in the absence of superconducting instabilities, the gauge field cannot 
be screened in the static limit [IS, 191. Recently this problem and its generalizations to 
arbitrary dimension d has been re-examined by a number of authors [ZO-281. Although 
the applicability of the higher dimensional bosonization approach to this, problem has 
been questioned [24,25], there exist other independent non-perturbative calculations which 
confirm the bosonization result [ZO]. It is perhaps fair to say that at present the issue is 
far from being settled. For electrons coupled to the Maxwell field the higher-dimensional 
bosonization approach [26,28] implies that d = 3 is a marginal dimension in the problem, 
in agreement with the renormalization group calculations [2I,27]. For d e 3 bosonization 
predicts Q"(qP, 0) K - ( f ~ q ) ~ - ~ ) ' ~ ,  where the momentum scale. ~d i s  given in [ZS].  
From our analysis given above it is clear that the stretched exponential behaviour implies 
that below three dimensions the coupling to the transverse gauge field completely washes 
out the Fermi surface. 

In summary, we have shown that in strongly correlated quantum liquids the momentum 
distribution is an analytic function close to the non-interacting Fermi surface. In these 
systems the concept of a Fermi surface must be replaced by a Fermi shell. The, perhaps, 
most important physical realization of such a system are half-filled quantum Hall systems. 
Although recent experiments suggest that in these systems there is a well-defined Fermi 
surface [29], the finite smearing scale ks might be beyond experimental~resolution. We 
have also argued that, at least for not too singular interactions, the bosonization approach 
remains consistent as long as the thickness ks of the Fermi shell is small compared with kF. 

I would like to thank Cornelia Buhrke, Guillermo Castilia, and  jean^ Lapointe for enjoying 
with me the 1995 APS March Meeting in San Jose, where this work was conceived. I am 
also grateful to K Schonhammer for many discussions and fruitful collaborations. 
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